SOLUCIONES de los EXÁMENES del CAPÍTULO 11

EJERCICIO NÚMERO UNO

Rb₂O triyoduro de cromo, yoduro de cromo(III)

 $\begin{array}{lll} AuCl_3 & & hidróxido \ de \ calcio \\ AgNO_3 & & octaazufre, \ azufre \ (S_8) \\ O_3 & & \'acido \ sulf\'urico \\ H_3PO_4 & & \'oxido \ de \ magnesio \\ MnCO_3 & & cromato \ de \ calcio \\ \end{array}$

H₂S (en solución acuosa) ion clorito

PH₃ óxido de cobre(I) Ca(ClO₃)₂ ácido ortotelúrico Na₂CO₃ ácido yódico

EJERCICIO NÚMERO DOS

Ag₂O hidróxido de aluminio HClO fosfato de hierro(III) Ba(OH)₂ dicromato de potasio

P₄ dióxido de azufre, oxido de azufre(IV)

LiH sulfuro de zinc o cinc
NaClO₄ ácido nitroso
CO₂ bromato de litio
NH₃ ion cloruro

 K_2SO_4 nitrato de mercurio(II) H_2S sulfito de amonio

EJERCICIO NÚMERO TRES

FeO permanganato de potasio HNO₃ ácido ortoperyódico BaS fluoruro de hidrógeno

Ni(OH)₃ ácido silícico

AlPO₄ ácido arsenoso o arsenioso

CsH hidróxido de cromo(II), dihidróxido de cromo

MgF₂ disulfato de sodio

 $CoAsO_4$ fluoruro de platino(II), difluoruro de platino H_2O_2 dióxido de estaño, óxido de estaño(IV)

Ba(ClO)₂ ion sulfato

EJERCICIO NÚMERO CUATRO

SiO₂ bromuro de níquel(III), tribromuro de níquel

 $\begin{array}{ll} Au_2(SeO_4)_3 & sulfuro \ de \ berilio \\ ZnH_2 & silicato \ de \ platino(IV) \\ SiH_4 & borato \ de \ magnesio \end{array}$

KOH óxido de cobalto(III), trióxido de dicobalto

N₂O₅ ácido tetrafluorobórico, tetrafluoroborato(1–) de hidrógeno

 $\begin{array}{ll} LiMnO_4 & arsenito \ de \ potasio \\ Sr_3(PO_4)_2 & nitrito \ de \ calcio \\ H_2CO_3 & fosfato \ de \ zinc \end{array}$

HgCrO₄ trióxido de azufre, óxido de azufre(VI)

EJERCICIO NÚMERO CINCO

Zn(ClO₄)₂ hidróxido de platino(IV), tetrahidróxido de platino

Sb₂O₃ sulfito de cobre(II) [Fe(H₂O)₆]Cl₂, [Fe(OH₂)₆]Cl₂ selenato de aluminio

Ni(NO₂)₂ dióxido de nitrógeno, óxido de nitrógeno(IV)

H₄P₂O₇ ácido bórico ClO₃⁻ óxido de oro(III) HI hipoclorito de níquel(II)

(NH₄)₃PO₄ ácido cloroso CaCr₂O₇ ácido silícico SrSO₄ óxido de litio

EJERCICIO NÚMERO SEIS

AsH₃ ion cobalto(III), ion cobalto(3+)

Pb(TeO₄)₂ ácido yodoso

FeCl₃ permanganato de cesio

MgCO₃ fluoruro de vanadio(IV), tetrafluoruro de vanadio

HgSiO₃ trihidruro de aluminio, alano, alumano

 $\begin{array}{ll} Cd(OH)_2 & \text{metasilicato de paladio(II)} \\ [Cr(H_2O)_6]Cl_3, [Cr(OH_2)_6]Cl_3 & \text{icosaazufre, eicosaazufre} \end{array}$

HPO₃ ácido metabórico CrO₄²⁻ arsenato de escandio H₂SO₃ clorato de oro(III)

EJERCICIO NÚMERO SIETE

Fe³⁺ yoduro de fosfonio, yoduro de fosfanio

PdO carbonato de níquel(II)

HIO₄ peróxido de hidrógeno, agua oxigenada, dioxidano

HIO₄ ion oxonio (hidronio)
(NH₄)₂Cr₂O₇ ion permanganato
Ti(CO₃)₂ selenito de estaño(IV)
SbH₃ nitrato de zinc

Co(OH)₃ silano, tetrahidruro de silicio

Pb₂SiO₄ telurato de oro(III), metatelurato de oro(III)

Cu(ClO₄)₂ triaquatribromocobalto, triaquatribromurocobalto(III)

EJERCICIO NÚMERO OCHO

NaNO₂ óxido de cromo(III), trióxido de dicromo Mg₃(AsO₄)₂ trifluoruro de arsénico, fluoruro de arsénico(III)

BP hidróxido de mercurio(I) Au₂(SO₄)₃ nitrato de hierro(III)

 $\begin{array}{lll} ZnF_2 & ion \ sulfuro \\ Ni(OH)_2 & ion \ hipoclorito \\ H_2S_2O_5 & selenato \ de \ bario \\ Be_2SiO_4 & carbonato \ de \ hierro(III) \end{array}$

H₂SeO₄ ácido hexafluoroantimónico(V), hexafluoroantimonato(1–)

de hidrógeno (preferido por CA)*

Sc(ClO₃)₃ silicato de cadmio

EJERCICIO NÚMERO NUEVE

Li₃BO₃ bromato de cadmio MnCl₂ ion hexaamminacromo(III)

H₄P₂O₇ ion diselenato Pd(ClO₄)₄* ácido metasilícico Be(OH)₂ nitrito de estroncio

Sr(NO₃)₂ heptaóxido de dicloro, óxido de cloro(VII)

ClO₂ hidruro de cobre(I)
Ba(HSO₃)₂ sulfito de estaño(II)
H₂Cr₂O₇ ion antimonato

[CoBr₂(CN)(OH₂)₃] trihidroxidooxidoantimonio, ácido antimónico (H₃SbO₄)

^{*} IUPAC 2005: hidrogeno(hexafluoruroantimonato).

^{*} Hay pocos compuestos conocidos de Pd(IV), en comparación con los de Pd(II). Así pues, se podría haber suprimido el número de oxidación IV de la Tabla Periódica simplificada y de la pág. 10, pero se decidió mantenerlo para que, dada la importancia práctica de la química del paladio, hubiera algo más de juego y no se le considerara un elemento con un número de oxidación único o fijo (el II).

EJERCICIO NÚMERO DIEZ

Sb(OH)₃ monóxido de carbono

ScCl₃ ácido bórico

[FeCl₄F₂]³⁻ ortotelurato de calcio

H₂SiO₃ cloruro de hierro(III), tricloruro de hierro

HgCl₂ tetracloroferrato(2–) o tetracloruroferrato(II) de sodio

 $Sn_3(PO_4)_2$ ion carbonato

H₃PO₃, H₂PHO₃, [P(OH)₃] tetrahidróxido de plomo, hidróxido de plomo(IV) Fe(MnO₄)₃ disulfuro de estaño, sulfuro de estaño(IV)

Mg(IO₃)₂ clorito de cromo(III) Pt(S₂O₇)₂ cromato de bario

EJERCICIO NÚMERO ONCE

SO₃ bromato de titanio (III), tribromato de titanio

NaBH₄ ion cesio

I₃ hexacloruroplatinato(IV) de hierro(III), hexacloroplatinato(2–) de hierro(3+)

Au(OH)₃ hidróxido de amonio HBrO₃ nitrito de cobre(II) HClO₂, [ClO(OH)] tetraóxido de dinitrógeno

Cs₃PO₄ tribromotrihidroximanganato(2–) de sodio o tribromurotrihidroxidomanga-

nato(IV) de sodio

Cu(ClO₃)₂ arsenato de cobalto(II) CO₃²⁻ metaborato de níquel(III)

SrTeO₃ clorato de plata

EJERCICIO NÚMERO DOCE

Sn(BrO₃)₄ ion dicromato

FeBO₃ disulfato de platino(IV)

Mg(ClO₃)₂ ion tetrafluorobromato(1–) o tetrafluorurobromato(III)

Ni₂(CO₃)₃ tetrahidroxiaurato(1–) de potasio, tetrahidroxidoaurato(III) de potasio MgSO₄ ion dibromodicloroniquelato(1–) o dibromurodicloruroniquelato(III) Cr(OH)₃ difluoruro de sulfurilo, difluoruro de sulfonilo, difluorurodioxidoazufre

HClO₃, [ClO₂(OH)] sulfato de oro(III)

PtO₂ pentaóxido de dibromo, óxido de bromo(V)

CoPO₄ arsenato de cobre(I)

Br₂O₇ tetracloruro de manganeso, cloruro de manganeso(IV)

EJERCICIO NÚMERO TRECE

MnS ion hexafluorocobaltato(4–) o hexafluorurocobaltato(II) SO₄^{2–} tetrahidroaluminato o tetrahidruroaluminato de litio

CoSeO₄ óxido de aluminio Sc₂Se₃ ion disulfato

 $\begin{array}{lll} FeF_3 & selenato \ de \ cobalto(II) \\ SO_3 & cromato \ de \ mercurio(II) \\ Cu(MnO_4)_2 & hidrogenosulfito \ de \ estroncio \\ Ca(OH)_2 & ion \ estaño(II) \ o \ estaño(2+) \end{array}$

HNO₂ ácido fosforoso

MnS₂ hexaclorotitanato(2–) de hexacquahierro(2+) o hexaclorurotitanato(IV) de

hexaaquahierro(II)*

EJERCICIO NÚMERO CATORCE

Pd(OH)₂ perbromato de cesio

NaClO₄ hidróxido de cobre(II), dihidróxido de cobre, hidróxido de cobre(2+) H₂O₂ tetracloruromercurato(II) de magnesio, tetracloromercurato(2–) de magnesio

Ni(BrO₃)₃ arsenato de níquel(III) CaO hidruro de calcio Au(ClO)₃ ion bromato

SrF₂ pentacarbonilhierro(0) AsH₃ sulfito de aluminio Co₂O₃ trifluoruro de boro

MnO₄ tetracianoplatinato(2–) de potasio o tetracianuroplatinato(II) de potasio

EJERCICIO NÚMERO QUINCE

LiBrO₃ óxido de zinc

HBO₂ tetratioxoestannato(4–) o tetrasulfuroestannato(IV) de aluminio*

CoCl₃ óxido de titanio(III)

VO₄³⁻ ion selenito

PdO₂ hidróxido de cobalto(II), dihidróxido de cobalto, hidróxido de cobalto(2+) ácido peroxonítrico, H–O–O–NO₂ (comparar con H–O–NO₂, ác. nítrico)

Fe(IO)₃ tetrahidroborato de litio, tetrahidruroborato de litio

[CoClF₂(NH₃)₃] diestannano, hexahidruro de diestaño

HgSO₃ ácido difosfórico

HClO₄, [ClO₃(OH)] metafosfato de níquel(II)

^{*} También podría tratarse del hexaclorurotitanato(III) de hexacquahierro(III). En un texto de nomenclatura no se discute la distribución electrónica preferida, la posibilidad de procesos redox internos o, hablando en general, la estabilidad relativa de las especies implicadas. $[Fe(H_2O)_6][TiCl_6]$ y $[Fe(OH_2)_6][TiCl_6]$ son el mismo compuesto y ambas fórmulas son correctas, aunque la IUPAC postule la segunda opción como preferida.

^{*} Antes tetratioestannato(IV) de aluminio, v. la primera nota de la pág. 65 ("tio").

SOLUCIONES de los EXÁMENES del CAPÍTULO 22

EJERCICIO NÚMERO UNO

En este ejercicio y en los que le siguen inmediatamente, para una molécula determinada se dibujan a menudo distintas fórmulas de constitución más o menos desarrolladas o simplificadas, a veces orientándolas en el plano del papel de maneras alternativas. Sin embargo, **en un examen real** no hay que dibujar tanto, como es lógico, sino que **basta un solo dibujo**. En función del nivel de la asignatura o del tipo de figuras que se usaban en clase, cada persona estará más acostumbrada a un tipo de representación u otra, pero en principio **cualquier figura con la conectividad correcta de los átomos es una respuesta acertada**.

En este ejercicio solo hay una molécula quiral (que puede existir en forma de enantiòmero R —con el metilo apuntando hacia el lector—y de enantiòmero S, v. pág. 109): el cuarto compuesto de la columna derecha. Dado que no se pide dibujar uno de los dos, basta una línea normal para representar cualquier mezcla de ambos, incluyendo por supuesto el racémico (50:50).

Hay dos moléculas que pueden presentarse en forma de estereoisómeros Z o E. Como no se indica nada en la pregunta —ni si se trata de uno de los dos o de una mezcla— se han dibujado fórmulas supersimplificadas de ambos (a veces, en los libros de texto de QO se dibuja una linea ondulada). Pero no es necesario en un examen, salvo que se pida en el enunciado.

EJERCICIO NÚMERO DOS

1-clorobutano, cloruro de butilo

2,2,3-trimetilbutano

5-hepten-1-ino, hept-5-en-1-ino

2,5-hexanodiol, hexano-2,5-diol

benzoato de etilo, bencenocarboxilato de etilo

ciclopentanocarbonitrilo, cianuro de ciclopentilo

6,6,6-trifluoro-2-propoxi-2-hexeno

2-fenil-3-nitro-1-propanol, 2-fenil-3-nitropropan-1-ol

fenil metil cetona, acetofenona, 1-feniletanona

4-metoxi-1,2,3-butanotriol, 4-metoxibutano-1,2,3-triol

ciclohexeno

butilamina, 1-butanamina, butan-1-amina

ciclohexanona

ácido 4-metil-2-pentinoico

éter dietílico, éter de dietilo, dietil éter, etoxietano

isopropilbenceno, (1-metiletil)benceno

4-pentenal, pent-4-enal

2-bromofenol (o-bromofenol)

1-cloro-1,3-butadiino (clorobutadiino)

butanamida, butiramida

En algunas preguntas de este ejercicio y de los ejercicios de número par que le siguen, siempre que hay espacio disponible en la misma línea, se escriben varios nombres correctos, pero no todos los preferidos por el CA ni todos los aceptados y preferidos por la IUPAC (PIN) que han aparecido a lo largo del texto. Hay que recurrir al capítulo correspondiente para recordar nombres alternativos. De nuevo hay que precisar que, excepto si el profesor indica lo contrario, en un examen real es suficiente dar un único nombre correcto.

En este ejercicio, la cuarta molécula de la columna izquierda puede presentarse en forma de tres estereoisómeros distintos (RR, SS y una forma meso/RS). La octava de la columna izquierda podría tener la configuración R, la S o ser una mezcla de las dos (si no se indica nada, se supone que un racémico, que es lo más frecuente). La décima de la columna izquierda puede existir en forma de 4 configuraciones, a saber: 2R3R/2R3S/2S3R/2S3S. La séptima de la columna izquierda puede implicar dos posibles estereoisómeros, Z y E. Como entrenamiento a un nivel más avanzado, es conveniente detectar y nombrar los posibles estereoisómeros en los siguientes ejercicios.

EJERCICIO NÚMERO TRES

Cl₃C-CCl₃

$$CH_3CH_2CH_2CH_2-O-CH_2CH_2CH_2CH_3$$

$$CH_3$$

$$CH_3 - C - CH_2 - CH_2 - CH_2 - CH_3$$

$$CH_3$$

CHCl₃

EJERCICIO NÚMERO CUATRO

6,7-dimetil-1,3-octadiino, 6,7-dimetilocta-1,3-diino

2-pentanamina, pentan-2-amina

3-hidroxibenzoato de etilo*

1,4-ciclohexanodiona, ciclohexano-1,4-diona

2-cloropropanonitrilo

1-fenil-4-penten-1-ona, 3-butenil fenil cetona

2-bromo-4,6-diyodofenol

5-amino-3-heptanol, 5-aminoheptan-3-ol

N-etoximetil-N-metilpropanamida

2-formilpropanoato de metilo

1,1,1,4,4,4-hexacloro-2,2,3,3-tetrafluorobutano 6-octen-2-inal, oct-6-en-2-inal

1-terc-butil-3-isopropilciclopentano

N,N-dimetilfenilamina,** *N,N*-dimetilbencenamina

1-fenoxi-1,3-butadieno, 1-fenoxibuta-1,3-dieno

butanodial

3-ciclohexil-2,5-hexanodiol

2-metil-2-metoxipropano, terc-butil metil éter

ácido 2-amino-4-nitrobenzoico

2-ciclodecil-1,1-dicloroeteno

* 3-Hidroxibencenocarboxilato de etilo, m-hidroxibenzoato etílico, éster etílico del ácido 3-hidroxibenzoico...

** También N,N-dimetilanilina.

EJERCICIO NÚMERO CINCO

$$C(CH_3)_3$$
 \nearrow CH_3CH_2-O

$$\begin{array}{cccc} \mathrm{CH_3-C=CH-CH_2-CH-CH_2-COOCH_2CH_3} \\ \mathrm{CH_3} & \mathrm{OH} \end{array}$$

Cl₃C-COOH

$$\begin{array}{ccccc} CH_2CH_3 \\ CH_3-CH-CH-CH_2-CH-CH_3 \\ CH_3 & CH_3 & CH_3 \end{array}$$

$$\begin{array}{c} \text{H}_2\text{NCH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{NH}_2 \\ \text{H}_2\text{N} \searrow \qquad \text{NH}_2 \end{array}$$

$$CH_3CH_2$$
-O- CH = CH_2 V 0 \sim

EJERCICIO NÚMERO SEIS

2,3-dimetil-1-octeno-4,7-diino ácido 1-cicloheptenocarboxílico 3-etil-2,5-hexanodiamina

9-ciclohexil-5-(1-propenil)-1,3-nonadien-7-ino 4-ciclopenteno-1,2,3-triona

1,4-dihidroxi-2-naftalenocarbonitrilo

3,5-dioxohexanoato de sec-butilo

2-metil-3-butenoato de 2,4-dioxopentilo

1-cloro-2-clorometil-5-isopropenildeca-2,8-dien-4-ol

3,3-dietil-6,6-dimetil-1,4-ciclohexadieno

1,1,1-tricloro-2,3-butanodiol 2,4-dimetil-5-oxohexanamida *N*-(3-nitrofenil)-*N*-propil-2-aminoetanol 1-etoxi-1-(2-feniletoxi)butano

2,2-dihidroxi-4-ciclopenteno-1,3-diona

3-hidroxi-N,N,4-trimetilbencenocarboxamida ácido 2-formilpentanodioico ácido 4-formil-4-(metoxicarbonil)butanoico

8-bromo-4-octanona, 8-bromooctan-4-ona 4-(1-fluoropropil)-3-hidroxibenzoato de etilo

EJERCICIO NÚMERO SIETE

* El nombre actual de la IUPAC no es éste sino N,N-di(propan-2-il)heptan-2-amina. Por supuesto, la IUPAC sigue aceptando isopropil y 1-metiletil, pero desde 2004 prefiere propan-2-il para el grupo CH(CH₃)₂.

EJERCICIO NÚMERO OCHO

5-hidroxi-2-yodobenzoato de neopentilo*

5-etoxi-1,2,3-pentatrieno, 5-etoxipenta-1,2,3-trieno

2-isopropil-4-nitropentanamida

2-(2-fenil-1-oxoetil)-3-hexinal

1-fenil-2-(4-trifluorometil)fenil-1,2-etanodiona

etenilbenceno (fenileteno o feniletileno), estireno

9-(2-propenil)-2-fenantrenol, 9-alil-2-fenantrol

5-fenil-4-(2-oxoetil)hept-2-enodial

3-imino-*N*,*N*-dimetil-1-ciclohexenamina

2-(1,3,5-hexatriinil)-1,3-propanodiol

4-fenil-4-octenonitrilo, 4-feniloct-4-enonitrilo 1,2,4-bencenotriol, benceno-1,2,4-triol 3-(1,3-ciclopentadienil)-*N*-ciclopentil-1-butanimina

2-nitrometil-1-pentanol, 2-(nitrometil)pentan-1-ol

1-bromo-1-fenil-2-metilpropeno

ácido 4-cicloocteno-1,1-dicarboxílico

3-clorometil-6-isopropil-5-metilnonano

1-fenil-1-hidroxi-5-metil-3-hexanona

1-benciloxi-2,3,4,5,6-pentafluorobenceno**

8-metil-4-(4-metoxifenoxi)-1,7-nonadieno

* 5-Hidroxi-2-yodobenzoato de 2,2-dimetilpropilo.

** 1-Fenilmetoxi-2,3,4,5,6-pentafluorobenceno (CA), bencil pentafluorofenil éter.

EJERCICIO NÚMERO NUEVE

EJERCICIO NÚMERO DIEZ

6,6,6-trifenil-2-(2-metoxietoxi)-2-hexeno

6-ciano-2-etil-3-hexinamida

1,2-naftalenodiona (CA), 1,2-naftoquinona*

4-amino-N-(2-feniletil)-2-nitrohexanamida

1,3-dinitro-2-(nitrometil)propano

1-(2-ciclopentenil)-3-isopropilhexano

ác. 6,6-dimetil-5-oxo-1,3,7-ciclooctatrienocarboxílico

5-formil-2-hidroxiheptanodinitrilo

(R)-3-dietilamino-2-(1-hidroxietil)-2-ciclohexenona****

àc. (S)-9,9-dicloro-3-hidroximetil-8-nonen-6-inoico***** 1-fenil-8-metil-7-nonen-1-in-5-ona

ácido 4-fenilbutanoico o 4-fenilbutírico

3-bromo-2,4,6-heptatrien-1-ol N-etil-N, 1-dimetil-1-butanamina

2-terc-butilbifenilo, 2-(1,1-dimetiletil)bifenilo

3,5-dioxooctanodial

ciclohexil 4-metilfenil éter**

3-(3-clorofenil)-3-(4-fluorofenil)pentano 2-(aminometil)benzoato de sec-butilo*** 4-(2,5-dihidroxifenil)-2-metil-2-butanol

^{*} Desde 2004, el preferido por la IUPAC (PIN) es, sin embargo, naftaleno-1,2-diona.

^{**} Éter ciclohexílico-4-metilfenílico, 4-(ciclohexiloxi)tolueno, p-(ciclohexiloxi)tolueno.

^{***} Éster 1-metilpropílico del ácido 2-(aminometil)benzoico (CA).

^{****} En la pregunta se ha dibujado una configuración concreta del C unido al OH. Hay que aplicar la regla de la secuencia (págs. 109-110) para ver que se trata del estereoisómero R. Como hay un único estereocentro, basta, en la práctica, con escribir (R) al principio del nombre.

^{*****} Hay un carbono estereogénico. Tal como se ha dibujado, se trata del estereoisómero S.